62 research outputs found

    Beyond Gauss: Image-Set Matching on the Riemannian Manifold of PDFs

    Get PDF
    State-of-the-art image-set matching techniques typically implicitly model each image-set with a Gaussian distribution. Here, we propose to go beyond these representations and model image-sets as probability distribution functions (PDFs) using kernel density estimators. To compare and match image-sets, we exploit Csiszar f-divergences, which bear strong connections to the geodesic distance defined on the space of PDFs, i.e., the statistical manifold. Furthermore, we introduce valid positive definite kernels on the statistical manifolds, which let us make use of more powerful classification schemes to match image-sets. Finally, we introduce a supervised dimensionality reduction technique that learns a latent space where f-divergences reflect the class labels of the data. Our experiments on diverse problems, such as video-based face recognition and dynamic texture classification, evidence the benefits of our approach over the state-of-the-art image-set matching methods

    From Review to Rating: Exploring Dependency Measures for Text Classification

    Full text link
    Various text analysis techniques exist, which attempt to uncover unstructured information from text. In this work, we explore using statistical dependence measures for textual classification, representing text as word vectors. Student satisfaction scores on a 3-point scale and their free text comments written about university subjects are used as the dataset. We have compared two textual representations: a frequency word representation and term frequency relationship to word vectors, and found that word vectors provide a greater accuracy. However, these word vectors have a large number of features which aggravates the burden of computational complexity. Thus, we explored using a non-linear dependency measure for feature selection by maximizing the dependence between the text reviews and corresponding scores. Our quantitative and qualitative analysis on a student satisfaction dataset shows that our approach achieves comparable accuracy to the full feature vector, while being an order of magnitude faster in testing. These text analysis and feature reduction techniques can be used for other textual data applications such as sentiment analysis.Comment: 8 page

    Multi-component Image Translation for Deep Domain Generalization

    Full text link
    Domain adaption (DA) and domain generalization (DG) are two closely related methods which are both concerned with the task of assigning labels to an unlabeled data set. The only dissimilarity between these approaches is that DA can access the target data during the training phase, while the target data is totally unseen during the training phase in DG. The task of DG is challenging as we have no earlier knowledge of the target samples. If DA methods are applied directly to DG by a simple exclusion of the target data from training, poor performance will result for a given task. In this paper, we tackle the domain generalization challenge in two ways. In our first approach, we propose a novel deep domain generalization architecture utilizing synthetic data generated by a Generative Adversarial Network (GAN). The discrepancy between the generated images and synthetic images is minimized using existing domain discrepancy metrics such as maximum mean discrepancy or correlation alignment. In our second approach, we introduce a protocol for applying DA methods to a DG scenario by excluding the target data from the training phase, splitting the source data to training and validation parts, and treating the validation data as target data for DA. We conduct extensive experiments on four cross-domain benchmark datasets. Experimental results signify our proposed model outperforms the current state-of-the-art methods for DG.Comment: Accepted in WACV 201

    Distribution-Matching Embedding for Visual Domain Adaptation

    Get PDF
    Domain-invariant representations are key to addressing the domain shift problem where the training and test examples follow different distributions. Existing techniques that have attempted to match the distributions of the source and target domains typically compare these distributions in the original feature space. This space, however, may not be directly suitable for such a comparison, since some of the features may have been distorted by the domain shift, or may be domain specific. In this paper, we introduce a Distribution-Matching Embedding approach: An unsupervised domain adaptation method that overcomes this issue by mapping the data to a latent space where the distance between the empirical distributions of the source and target examples is minimized. In other words, we seek to extract the information that is invariant across the source and target data. In particular, we study two different distances to compare the source and target distributions: the Maximum Mean Discrepancy and the Hellinger distance. Furthermore, we show that our approach allows us to learn either a linear embedding, or a nonlinear one. We demonstrate the benefits of our approach on the tasks of visual object recognition, text categorization, and WiFi localization
    • …
    corecore